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Letters 

A thermodynamic derivation o f the 
dihedral angle equation for a two phase 
system 

It is well-known that in a two phase (solid-liquid 
or solid-vapour) two particle system, a dihedral 
angle, r forms as seen for an ideal system in Fig. 1. 
If it is assumed for the purposes of derivation that 
the particles, S, are of uniform spherical size, free 
of gravitational effects and are crystalline with 
isotropic interfacial energies, the system will be 
completely symmetrical with a unique dihedral 
angle, r determined by the following expression 

7ss = 27SF COS ~ (1) 

where 7ss is the specific interfacial energy* at the 
solid-solid interface, i.e. the grain boundary 
energy, and 7SF is the specific interfacial energy at 
solid-fluid (vapour or liquid) interface. (In real 
systems dihedral angles would be achieved but 
symmetrical configurations would almost never be 
reached because of the anisotropy of the surface 
and grain boundary energies, both of which are 
dependent on crystallographic orientations, and 
because of intermediate metastable configurations 
due to kinetics affected by differences in mass 
transport.) 
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Figure 1 Representation of spherical particles in an ideal 
two phase, two particle system, showing the formation of 
the dihedral angle, O. 

Equation 1 can be derived by either a mechan- 
ical or thermodynamic approach. The mechanical 
approach consists of a balance of three forces at 
equilibrium as deduced from Fig. 1. The thermo- 
dynamic or energetic approach, however, is less 
straightforward, which to the authors' knowledge, 
has not yet been reported in the literature. This 
approach provides a basic understanding for the 
formation of the equilibrium configuration. 
Therefore, the present objective is to present a 
thermodynamic solution of  Equation 1. 

The basic assumptions for the model shown in 
Fig. 1 are that the particles, S, are of equal size 
with isotropic surface energies and the lowest free 
energy configuration, that is, they are spheres. 
The model further assumes that as the spheres 
interpenetrate an isotropic grain boundary forms 
and grows, and that the displaced materials, repre- 
sented by h in Fig. 1, are uniformly distributed 
over the free surfaces in order to maintain the 
lowest free energy configuration of the spheres at 
all times. The differential change of Gibbs free 
energy for the entire system at a given time, 
t~Gsys, can then be represented by 

f3'SS f T S F  
SGsys = ~ dAss q- $ dAsF,  (2) J ASS J'AsF 

where Ass and A SF are areas of solid-solid and 
solid-fluid interfaces, respectively. The first term 
on the right is positive and the second, negative. 
As long as ~Gsy s remains negative, the interpene- 
tration of the two spherical particles (increase of 
Ass) continues. When t~Gsys becomes zero, the 
system reaches a metastable equilibrium state. This 
system with the indicated boundary conditions 
does not reach the lowest free energy configur- 
ation of a single sphere since further interpene- 
tration results in a positive value of ~Gsy s. 

The thermodynamic approach may now be 
followed for the derivation of Equation 1 for the 
equilibrium configuration. A material balance for 
each spherical particle requires that 

p~ = p ( V t - v = . ) ,  (3) 

*Although they are not exactly equal, inteffacial energies and tensions are used interchangeably. 
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where Vi is the initial volume of each spherical 
particle, V t is the transient increasing volume of 
each interpenetrating spherical particle at a given 
instant and Veap is the volume of the resulting cap 
removed from each particle. The density of the 
solid is/9. 

Differentiation of Equation 3 results in 
d V t -- d Veap = 0, or 4r2dr -- 2rhdh -- h 2dr + 
h2dh = 0, or 

{ hdh t 
dr = _ ~2~--~] '  (4) 

where r is the radius of the spherical particle with 
a volume Vt, and h is the height of the cap 
removed. 

IfA = the surface area of each spherical particle 
with a volume Vt, A1 = the curved surface area of 
the cap, and A2 = the base area of the cap, then 

A = 4nr 2 (5) 

Ax = 2~rrh (6) 

A2 = ~.y2 = 7r[r2_(r_h)2]  

= 7r(2rh -- h2). (7) 

Differentiation of Equations 5, 6 and 7 results in 

dA = 8rrrdr (8) 

dA1 = 2rrrdh + 2rrhdr (9) 

dA2 = 27rrdh + 2nhdr- -  27rhdh (10) 

From Equation 2, and Fig. 1 

FTSS/2* 

5Gonespher e = 5 ] dA2 
J A s s  =A 2 

[~'SF (dA + 5 -- dA 1). 
J A s F = A - A I  

(11) 
Substituting Equations 8, 9 and 10 in Equation 11 
gives 

5Gone sphere = 7r [-- 5 f 7 s s ( h d h  - -  h d r  - -  r d h )  

+ 26 f 7SF(4rdr -- rdh -- hdr)]. 

(12) 

Substituting Equation 4 into Equation 12 produces 

[ s f Y s s ( r h d h - - 2 r 2 d h )  
5Gonesphere = /r 2r + h 

( 7sF(3rhdh-2r2dh-h2dh] (13) 
+ 25 j 2r-r-r~ h ]" 

At equilibrium, 6Gonesphere -= 0. Equation 13 
then becomes 

7ss -- (2r -- h)(r -- h) r -- h 
- -  - -  - -  COS 

27sF r ( h - - 2 0  r 2 '  

or 7ss = 27SF COS-- 
2 

(14) 
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